Comparison with phylolm
We first compare syntax and run-times using simulated data against
phylolm
. This confirms that runtimes from
phylosem
are within an order of magnitude and that results
are nearly identical for BM, OU, delta, and kappa models.
# Settings
Ntree = 100
sd_x = 0.3
sd_y = 0.3
b0_x = 1
b0_y = 0
b_xy = 1
# Simulate tree
set.seed(1)
tree = ape::rtree(n=Ntree)
# Simulate data
x = b0_x + sd_x * phylolm::rTrait(n = 1, phy=tree)
ybar = b0_y + b_xy*x
y_normal = ybar + sd_y * phylolm::rTrait(n = 1, phy=tree)
# Construct, re-order, and reduce data
Data = data.frame(x=x,y=y_normal)[]
# Compare using BM model
start_time = Sys.time()
plm_bm = phylolm::phylolm(y ~ 1 + x, data=Data, phy=tree, model="BM" )
Sys.time() - start_time
#> Time difference of 0.005047798 secs
knitr::kable(summary(plm_bm)$coefficients, digits=3)
(Intercept) |
-0.371 |
0.214 |
-1.734 |
0.086 |
x |
1.117 |
0.101 |
11.053 |
0.000 |
start_time = Sys.time()
psem_bm = phylosem( sem = "x -> y, p",
data = Data,
tree = tree,
control = phylosem_control(quiet = TRUE) )
Sys.time() - start_time
#> Time difference of 0.3451188 secs
knitr::kable(summary(psem_bm)$coefficients, digits=3)
NA |
Intercept_x |
1.087 |
0.183 |
5.945 |
0.000 |
NA |
Intercept_y |
-0.371 |
0.213 |
1.743 |
0.081 |
x -> y |
p |
1.117 |
0.101 |
11.109 |
0.000 |
x <-> x |
V[x] |
0.315 |
0.022 |
14.072 |
0.000 |
y <-> y |
V[y] |
0.315 |
0.022 |
14.072 |
0.000 |
# Compare using OU
start_time = Sys.time()
plm_ou = phylolm::phylolm(y ~ 1 + x, data=Data, phy=tree, model="OUrandomRoot" )
Sys.time() - start_time
#> Time difference of 0.01127172 secs
start_time = Sys.time()
psem_ou = phylosem( sem = "x -> y, p",
data = Data,
tree = tree,
estimate_ou = TRUE,
control = phylosem_control(quiet = TRUE) )
Sys.time() - start_time
#> Time difference of 0.1447604 secs
knitr::kable(summary(psem_ou)$coefficients, digits=3)
NA |
Intercept_x |
1.028 |
0.208 |
4.946 |
0.000 |
NA |
Intercept_y |
-0.274 |
0.235 |
1.165 |
0.244 |
x -> y |
p |
1.099 |
0.101 |
10.887 |
0.000 |
x <-> x |
V[x] |
0.332 |
0.026 |
12.712 |
0.000 |
y <-> y |
V[y] |
0.332 |
0.026 |
12.860 |
0.000 |
knitr::kable(summary(plm_ou)$coefficients, digits=3)
(Intercept) |
-0.781 |
0.389 |
-2.006 |
0.048 |
x |
1.095 |
0.101 |
10.850 |
0.000 |
knitr::kable(c( "phylolm_alpha"=plm_ou$optpar,
"phylosem_alpha"=exp(psem_ou$parhat$lnalpha) ), digits=3)
phylolm_alpha |
0.120 |
phylosem_alpha |
0.105 |
# Compare using Pagel's lambda
start_time = Sys.time()
plm_lambda = phylolm::phylolm(y ~ 1 + x, data=Data, phy=tree, model="lambda" )
Sys.time() - start_time
#> Time difference of 0.02880216 secs
start_time = Sys.time()
psem_lambda = phylosem( sem = "x -> y, p",
data = Data,
tree = tree,
estimate_lambda = TRUE,
control = phylosem_control(quiet = TRUE) )
Sys.time() - start_time
#> Time difference of 0.1242015 secs
knitr::kable(summary(psem_lambda)$coefficients, digits=3)
NA |
Intercept_x |
1.092 |
0.162 |
6.740 |
0.000 |
NA |
Intercept_y |
-0.346 |
0.200 |
1.726 |
0.084 |
x -> y |
p |
1.092 |
0.103 |
10.559 |
0.000 |
x <-> x |
V[x] |
0.284 |
0.025 |
11.367 |
0.000 |
y <-> y |
V[y] |
0.290 |
0.024 |
11.897 |
0.000 |
knitr::kable(summary(plm_lambda)$coefficients, digits=3)
(Intercept) |
-0.356 |
0.207 |
-1.718 |
0.089 |
x |
1.102 |
0.103 |
10.744 |
0.000 |
knitr::kable(c( "phylolm_lambda"=plm_lambda$optpar,
"phylosem_lambda"=plogis(psem_lambda$parhat$logitlambda) ), digits=3)
phylolm_lambda |
0.980 |
phylosem_lambda |
0.957 |
# Compare using Pagel's kappa
start_time = Sys.time()
plm_kappa = phylolm::phylolm(y ~ 1 + x, data=Data, phy=tree, model="kappa", lower.bound = 0, upper.bound = 3 )
Sys.time() - start_time
#> Time difference of 0.006010532 secs
start_time = Sys.time()
psem_kappa = phylosem( sem = "x -> y, p",
data = Data,
tree = tree,
estimate_kappa = TRUE,
control = phylosem_control(quiet = TRUE) )
Sys.time() - start_time
#> Time difference of 0.09933448 secs
knitr::kable(summary(psem_kappa)$coefficients, digits=3)
NA |
Intercept_x |
1.078 |
0.186 |
5.783 |
0.000 |
NA |
Intercept_y |
-0.368 |
0.216 |
1.705 |
0.088 |
x -> y |
p |
1.113 |
0.101 |
11.025 |
0.000 |
x <-> x |
V[x] |
0.299 |
0.029 |
10.183 |
0.000 |
y <-> y |
V[y] |
0.300 |
0.029 |
10.343 |
0.000 |
knitr::kable(summary(plm_kappa)$coefficients, digits=3)
(Intercept) |
-0.370 |
0.216 |
-1.716 |
0.089 |
x |
1.115 |
0.101 |
11.015 |
0.000 |
knitr::kable(c( "phylolm_kappa"=plm_kappa$optpar,
"phylosem_kappa"=exp(psem_kappa$parhat$lnkappa) ), digits=3)
phylolm_kappa |
0.930 |
phylosem_kappa |
0.857 |
Generalized linear models
We also compare results among software for fitting phylogenetic
generalized linear models (PGLM).
Poisson-distributed response
First, we specifically explore a Poisson-distributed PGLM, comparing
phylosem
against phylolm::phyloglm
(which uses
Generalized Estimating Equations) and phyr::pglmm_compare
(which uses maximum likelihood).
# Settings
Ntree = 100
sd_x = 0.3
sd_y = 0.3
b0_x = 1
b0_y = 0
b_xy = 1
# Simulate tree
set.seed(1)
tree = ape::rtree(n=Ntree)
# Simulate data
x = b0_x + sd_x * phylolm::rTrait(n = 1, phy=tree)
ybar = b0_y + b_xy*x
y_normal = ybar + sd_y * phylolm::rTrait(n = 1, phy=tree)
y_pois = rpois( n=Ntree, lambda=exp(y_normal) )
# Construct, re-order, and reduce data
Data = data.frame(x=x,y=y_pois)
# Compare using phylolm::phyloglm
pglm = phylolm::phyloglm(y ~ 1 + x, data=Data, phy=tree, method="poisson_GEE" )
knitr::kable(summary(pglm)$coefficients, digits=3)
(Intercept) |
-1.098 |
0.633 |
-1.736 |
0.083 |
x |
1.314 |
0.247 |
5.320 |
0.000 |
#
pglmm = phyr::pglmm_compare(
y ~ 1 + x,
family = "poisson",
data = Data,
phy = tree )
knitr::kable(summary(pglmm), digits=3)
#> Generalized linear mixed model for poisson data fit by restricted maximum likelihood
#>
#> Call:y ~ 1 + x
#>
#> logLik AIC BIC
#> -173.4 354.7 360.6
#>
#> Phylogenetic random effects variance (s2):
#> Variance Std.Dev
#> s2 0.05511 0.2348
#>
#> Fixed effects:
#> Value Std.Error Zscore Pvalue
#> (Intercept) -0.57009 0.30469 -1.8710 0.06134 .
#> x 1.18137 0.19807 5.9645 2.454e-09 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
pgsem = phylosem( sem = "x -> y, p",
data = Data,
family = c("fixed","poisson"),
tree = tree,
control = phylosem_control(quiet = TRUE) )
knitr::kable(summary(pgsem)$coefficients, digits=3)
NA |
Intercept_x |
1.087 |
0.183 |
5.945 |
0.000 |
NA |
Intercept_y |
-0.581 |
0.305 |
1.904 |
0.057 |
x -> y |
p |
1.190 |
0.199 |
5.971 |
0.000 |
x <-> x |
V[x] |
0.315 |
0.022 |
14.072 |
0.000 |
y <-> y |
V[y] |
0.232 |
0.054 |
4.310 |
0.000 |
We also compare results against brms
(which fits a
Bayesian hierarchical model), although we load results from compiled run
of brms
to avoid users having to install STAN to run
vignettes for phylosem
:
# Comare using Bayesian implementation in brms
library(brms)
Amat <- ape::vcv.phylo(tree)
Data$tips <- rownames(Data)
mcmc <- brm(
y ~ 1 + x + (1 | gr(tips, cov = A)),
data = Data, data2 = list(A = Amat),
family = 'poisson',
cores = 4
)
knitr::kable(fixef(mcmc), digits = 3)
# Plot them together
library(ggplot2)
pdat <- rbind.data.frame(
coef(summary(pglm))[, 1:2],
data.frame(Estimate = pglmm$B, StdErr = pglmm$B.se),
setNames(as.data.frame(fixef(mcmc))[1:2], c('Estimate', 'StdErr')),
setNames(summary(pgsem)$coefficients[2:3, 3:4], c('Estimate', 'StdErr'))
)
pdat$Param <- rep(c('Intercept', 'Slope'), 4)
pdat$Method <- rep( c('phylolm::phyloglm', 'phyr::pglmm_compare',
'brms::brm', 'phylosem::phylosem'), each = 2)
figure = ggplot(pdat, aes(
x = Estimate, xmin = Estimate - StdErr,
xmax = Estimate + StdErr, y = Param, color = Method
)) +
geom_pointrange(position = position_dodge(width = 0.6)) +
theme_classic() +
theme(panel.grid.major.x = element_line(), panel.grid.minor.x = element_line())
In this instance (and in others we have explored), results from
phylolm::phyloglm
are generally different while those from
phylosem
, phyr::pglmm_compare
, and
brms
are close but not quite identical.
Binomial regression
We also compare results for a Bernoulli-distributed response using
PGLM. We again compare phylosem
against
phyr::pglmm_compare
, and do not explore threshold models
which we expect to give different results due differences in assumptions
about how latent variables affect measurements.
# Settings
Ntree = 100
sd_x = 0.3
sd_y = 0.3
b0_x = 1
b0_y = 0
b_xy = 1
# Simulate tree
set.seed(1)
tree = ape::rtree(n=Ntree)
# Simulate data
x = b0_x + sd_x * phylolm::rTrait(n = 1, phy=tree)
ybar = b0_y + b_xy*x
y_normal = ybar + sd_y * phylolm::rTrait(n = 1, phy=tree)
y_binom = rbinom( n=Ntree, size=1, prob=plogis(y_normal) )
# Construct, re-order, and reduce data
Data = data.frame(x=x,y=y_binom)
#
pglmm = phyr::pglmm_compare(
y ~ 1 + x,
family = "binomial",
data = Data,
phy = tree )
knitr::kable(summary(pglmm), digits=3)
#> Generalized linear mixed model for binomial data fit by restricted maximum likelihood
#>
#> Call:y ~ 1 + x
#>
#> logLik AIC BIC
#> -63.74 135.47 141.32
#>
#> Phylogenetic random effects variance (s2):
#> Variance Std.Dev
#> s2 0.1076 0.328
#>
#> Fixed effects:
#> Value Std.Error Zscore Pvalue
#> (Intercept) 0.23179 0.60507 0.3831 0.7017
#> x 0.44548 0.45708 0.9746 0.3297
#
pgsem = phylosem( sem = "x -> y, p",
data = Data,
family = c("fixed","binomial"),
tree = tree,
control = phylosem_control(quiet = TRUE) )
knitr::kable(summary(pgsem)$coefficients, digits=3)
NA |
Intercept_x |
1.087 |
0.183 |
5.945 |
0.000 |
NA |
Intercept_y |
0.204 |
0.589 |
0.346 |
0.730 |
x -> y |
p |
0.458 |
0.468 |
0.977 |
0.328 |
x <-> x |
V[x] |
-0.315 |
0.022 |
14.072 |
0.000 |
y <-> y |
V[y] |
0.290 |
0.284 |
1.020 |
0.308 |
In this instance, phylosem
and
phyr::pglmm_compare
give similar estimates and standard
errors for the slope term.
Summary of PGLM results
Based on these two comparisons, we conclude that phylosem provides an
interface for maximum-likelihood estimate of phylogenetic generalized
linear models (PGLM), and extends this class to include mixed data
(i.e., a combination of different measurement types), missing data, and
non-recursive structural linkages. However, we also encourage further
cross-testing of different software for fitting phylogenetic generalized
linear models.
Compare with phylopath
We next compare with a single run of phylopath
. This
again confirms that runtimes are within an order of magnitude and
results are identical for standardized or unstandardized
coefficients.
library(phylopath)
library(phylosem)
# make copy of data that's rescaled
rhino_scaled = rhino
rhino_scaled[,c("BM","NL","LS","DD","RS")] = scale(rhino_scaled[,c("BM","NL","LS","DD","RS")])
# Fit and plot using phylopath
dag <- DAG(RS ~ DD, LS ~ BM, NL ~ BM, DD ~ NL)
start_time = Sys.time()
result <- est_DAG( DAG = dag,
data = rhino,
tree = rhino_tree,
model = "BM",
measurement_error = FALSE )
Sys.time() - start_time
#> Time difference of 0.009697437 secs
plot(result)
# Fit and plot using phylosem
model = "
DD -> RS, p1
BM -> LS, p2
BM -> NL, p3
NL -> DD, p4
"
start_time = Sys.time()
psem = phylosem( sem = model,
data = rhino_scaled[,c("BM","NL","DD","RS","LS")],
tree = rhino_tree,
control = phylosem_control(quiet = TRUE) )
Sys.time() - start_time
#> Time difference of 0.3277287 secs
plot( as_fitted_DAG(psem) )
Comparison with sem
We next compare syntax and runtime against R-package
sem
. This confirms that runtimes are within an order of
magnitude when specifying a star-phylogeny in phylosem
to
match the assumed structure in sem
library(sem)
library(TreeTools)
# Simulation parameters
n_obs = 50
# Intercepts
a1 = 1
a2 = 2
a3 = 3
a4 = 4
# Slopes
b12 = 0.3
b23 = 0
b34 = 0.3
# Standard deviations
s1 = 0.1
s2 = 0.2
s3 = 0.3
s4 = 0.4
# Simulate data
E1 = rnorm(n_obs, sd=s1)
E2 = rnorm(n_obs, sd=s2)
E3 = rnorm(n_obs, sd=s3)
E4 = rnorm(n_obs, sd=s4)
Y1 = a1 + E1
Y2 = a2 + b12*Y1 + E2
Y3 = a3 + b23*Y2 + E3
Y4 = a4 + b34*Y3 + E4
Data = data.frame(Y1=Y1, Y2=Y2, Y3=Y3, Y4=Y4)
# Specify path diagram (in this case, using correct structure)
equations = "
Y2 = b12 * Y1
Y4 = b34 * Y3
"
model <- specifyEquations(text=equations, exog.variances=TRUE, endog.variances=TRUE)
# Fit using package:sem
start_time = Sys.time()
Sem <- sem(model, data=Data)
Sys.time() - start_time
#> Time difference of 0.01048756 secs
# Specify star phylogeny
tree_null = TreeTools::StarTree(n_obs)
tree_null$edge.length = rep(1,nrow(tree_null$edge))
rownames(Data) = tree_null$tip.label
# Fit using phylosem
start_time = Sys.time()
psem = phylosem( data = Data,
sem = equations,
tree = tree_null,
control = phylosem_control(quiet = TRUE) )
Sys.time() - start_time
#> Time difference of 0.05481553 secs
We then compare estimated values for standardized coefficients
Y1 -> Y2 |
b12 |
0.345 |
Y3 -> Y4 |
b34 |
0.343 |
and also compare values for unstandardized coefficients:
b12 |
0.660 |
b34 |
0.390 |
V[Y1] |
0.010 |
V[Y2] |
0.038 |
V[Y3] |
0.098 |
V[Y4] |
0.126 |
Y1 -> Y2 |
b12 |
0.660 |
Y3 -> Y4 |
b34 |
0.390 |
Y1 <-> Y1 |
V[Y1] |
0.010 |
Y2 <-> Y2 |
V[Y2] |
0.038 |
Y3 <-> Y3 |
V[Y3] |
0.098 |
Y4 <-> Y4 |
V[Y4] |
0.126 |
Comparison with Rphylopars
Finally, we compare syntax and runtime against R-package
Rphylopars
. This confirms that we can impute identical
estimates using both packages, when specifying a full-rank covariance in
phylosem
We note that phylosem
also allows parsimonious
representations of the trait covariance via the inputted SEM
structure.
library(Rphylopars)
# Format data, within no values for species t1
Data = rhino[,c("BM","NL","DD","RS","LS")]
rownames(Data) = tree$tip.label
Data['t1',] = NA
# fit using phylopars
start_time = Sys.time()
pars <- phylopars( trait_data = cbind(species=rownames(Data),Data),
tree = tree,
pheno_error = FALSE,
phylo_correlated = TRUE,
pheno_correlated = FALSE)
Sys.time() - start_time
#> Time difference of 0.1055052 secs
# Display estimates for missing values
knitr::kable(cbind( "Estimate"=pars$anc_recon["t1",], "Var"=pars$anc_var["t1",] ), digits=3)
BM |
1.266 |
1.941 |
NL |
1.600 |
1.856 |
DD |
2.301 |
1.708 |
RS |
0.431 |
1.909 |
LS |
1.083 |
1.347 |
# fit using phylosem
start_time = Sys.time()
psem = phylosem( data = Data,
tree = tree,
sem = "",
covs = "BM, NL, DD, RS, LS",
control = phylosem_control(quiet = TRUE) )
Sys.time() - start_time
#> Time difference of 0.4954724 secs
# Display estimates for missing values
knitr::kable(cbind(
"Estimate"=as.list(psem$sdrep,"Estimate")$x_vj[ match("t1",tree$tip.label), ],
"Var"=as.list(psem$sdrep,"Std. Error")$x_vj[ match("t1",tree$tip.label), ]^2
), digits=3)
1.266 |
1.941 |
1.600 |
1.856 |
2.301 |
1.708 |
0.431 |
1.910 |
1.083 |
1.347 |